Tag Archives: reciprocating compressor

China Hot selling Advanced Technology Industrial Oil Free High Pressure Reciprocating Air Compressor lowes air compressor

Product Description

Detailed Photos

Advanced Technology Industrial Oil Free High Pressure Reciprocating Air Compressor

Description&Advantages

Product Descriptions:
High-pressure series compressors, medium-to-high pressure compressors for oil fields, general-purpose piston compressors, oil-free compressors of DW, VW, MZD, SF types, liquefied petroleum gas (LPG) circulation compressors, natural gas and gas bottle filling series compressors, and various types of pressure vessels. We can provide compressors with a discharge capacity ranging from 300 to 12000 nm³/h and discharge pressures from 0.2 to 45 MPa, suitable for compressing air, nitrogen, liquefied petroleum gas, coal gas, natural gas, carbon dioxide, propane, ethylene, ammonia, difluoroethane, and other mediem. With over 600 different models, our products are widely used in urban construction, petroleum, coal, geology, chemical, metallurgy, machinery manufacturing, medical, food and beverage, liquefied gas stations, natural gas stations, and other fields

ASC Compressor Factory are oil-free lubrication reciprocating piston compressors developed in collaboration with the German company CHINAMFG DEMAG. These models are known for their low energy consumption, minimal noise, reduced vibration, high reliability, and easy operation.

Each unit primarily consists of the compressor mainframe, electric motor, common base frame, air system, cooling system, lubrication system, instrument control system, drainage system, and electrical system. All components are generally installed on a single common base frame, which is then mounted on a concrete foundation, making it a fixed-type gas station. The connections between the equipment and the fixing points to the base are detachable, making transportation, installation, operation, and maintenance extremely convenient.

Advantages:
Our products, incorporating technology from Germany’s CHINAMFG Demag companies, exhibit high reliability. Wearable parts like gas valves and piston rings use products from Austria’s Hoerbiger company, with a lifespan exceeding 8000 hours. The system supports soft starting, allowing frequent start and stop cycles for the compressor.  It features a wide intake range for broad adaptability. The overall skid-mounted structure results in low noise and is easy to install in urban areas, leading to investment savings.
It is equipped with a CHINAMFG PLC control system for high automation, ABB soft start (or variable frequency), and features automatic shutdown with audible and visual alarms in case of faults

Product Parameters

 

Medium to High Compressor Parameter Sheet
No Model Medium Capacity   Inlet Pressure Outlet Pressure   Rotation Power    Cooling Method
nm3/h  MPa MPa  r/min KW  
1 DW-2.4/(18~25)-50 Raw Gas 2700 1.8~2.5 5 980 160 Water
2 DW-5.5/(13-15)-26 Nitrogen 4500 1.3~1.5 2.6 740 160 Water
3 VW-4.6/52 BOG 250 Atmospheric Pressure 5.2 740 75 Closed loop
4 DWF-7/(2-4)-30 Wellhead Gas 2100 0.2~0.4 3 740 200 Air
5 VWD-3.2/(0-0.2)-40 Biogas 200 0~0.02 4 740 45 Closed loop
6 DW-4/5-41 Exhaust Gas 1200 0.5 4.1 980 160 Water
7 VW-4.1/(36.8-44.7)-
(39.9-49.9)
Regenerated Gas 8865 3.68~4.47 3.99~4.99 980 132 Water
8 2VW-18/0.05-90 BOG 1100 0.005 9 980 250 Water
9 VW-4.8/48-54 Natural Gas 12000 4.8 5.4 980 132 Water
10 VW-2/120 Carbon Monoxide 1200 Atmospheric Pressure 12 740 37 Water
11 VW-2.5/120 Carbon Monoxide 1200 Atmospheric Pressure 12 740 45 Water

High-Pressure Compressor (Pipeline Blowing) Specification Table
No Model Medium Capacity   Inlet Pressure Outlet Pressure   Rotation Power    Cooling Method
m3/h  MPa MPa  r/min W
1 SF-10/250 Air 600 Atm 25 1330 258.5 (Diesel Motor) Air
2 SF-10/150 Air 600 Atm 15 1330 258.5 (Diesel Motor)
3 SF-7.5/250 Air 450 Atm 25 980 160 (Electric Motor)
4 SF-7.5/150 Air 450 Atm 15 980 132 (Electric Motor)
5 SF-8.5/250 Air 510 Atm 15 980 200 (Electric Motor)
6 W-10/60 Air 600 Atm 6 1330 132 (Electric Motor)

High-Pressure Compressor (Oilfield Membrane Nitrogen Generation) Parameter Table
Model Flow Rate Outlet Pressure   Air compressor form and series Form and series of nitrogen booster compressor Drive parameter Power    Membrane Module Qty
nm3/h MPa KW
MZD-300/250 300 25 Screw type single-stage V-type piston three-stage 90KW+55KW 300 4
MZD-300/350 300 35 Screw type single-stage V-type piston four-stage 90KW+55KW 300 4
MZD-300/250-C 300 25 Screw type single-stage V-type piston three-stage TBD234V6 / 4
MZD-300/350-C 300 35 Screw type single-stage V-type piston four-stage TBD234V6 / 4
MZD-600/250 600 25 Screw type single-stage V-type piston three-stage 185KW+132KW 500 8
MZD-600/350 600 35 Screw type single-stage V-type piston four-stage 185KW+132KW 500 8
MZD-600/250-C 600 25 Screw type single-stage V-type piston three-stage TBD234VB / 8
MZD-600/350-C 600 35 Screw type single-stage V-type piston four-stage TBD234VB / 8
MZD-900/250 900 25 Screw type single-stage V-type piston three-stage 250KW+185KW 800 12
MZD-900/350 900 35 Screw type single-stage V-type piston four-stage 250KW+185KW 800 12
MZD-1200/250 1200 25 Screw type single-stage V-type piston four-stage 315KW+250KW 880 16
MZD-1200/350 1200 35 Screw type single-stage V-type piston four-stage 315KW+250KW 880 16
MZD-1500/150 1200 15 Screw type single-stage V-type piston three-stage 440KW+220KW 880 20

Our Factory

Part of Customer Visit

Certifications & Testing

 

Related Product

 

FAQ

Q:Are you a factory?

A:Yes, we are indeed a factory. We specialize in manufacturing high-quality Air/Gas Compressors and are proud to be a primary source for these products.

Q:How long is your delivery time?
A:It varies depending on the specific situation. For our standard configuration compressors, the delivery time is around 30 days. For customized compressors, it usually takes about 30-45 days.

Q:What technical support do you offer?
A:We offer comprehensive technical support to our clients, including remote assistance for installation and commissioning processes. Additionally, we have a team of seasoned engineers ready to be deployed to international client locations for meticulous on-site debugging, installation, and post-installation services.

Q:What is your warranty period?
A:Our warranty policy is valid for a period of 18 months from the date of commissioning at the end customer’s site or 21 months from the date of receipt by the purchaser, whichever comes first. This comprehensive coverage is designed to ensure total customer satisfaction and the reliability of our products

Q:How do you package the compressors?
A:For smaller compressors, we utilize robust plywood boxes that conform to export specifications.
    For the larger units, we strategically place them in freight containers, implementing secure fastening methods to safeguard            against any potential damage during the shipping process.

Q:What are your payment terms?
A:Usually, the payment is made by T/T with a 30% down payment CHINAMFG confirmation of the Proforma Invoice (PI), and the balance is to be paid after inspection and before shipment. We accept both TT and L/C at sight.

Send message  Get product Offer & Brochure!!!

 ↓↓↓

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Local Teams
Warranty: 18 Months
Principle: Reciprocating Compressor
Application: Back Pressure Type, Intermediate Back Pressure Type, High Back Pressure Type, Low Back Pressure Type
Performance: Low Noise, Variable Frequency, Explosion-Proof
Mute: Mute
Samples:
US$ 40000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What is the impact of humidity on compressed air quality?

Humidity can have a significant impact on the quality of compressed air. Compressed air systems often draw in ambient air, which contains moisture in the form of water vapor. When this air is compressed, the moisture becomes concentrated, leading to potential issues in the compressed air. Here’s an overview of the impact of humidity on compressed air quality:

1. Corrosion:

High humidity in compressed air can contribute to corrosion within the compressed air system. The moisture in the air can react with metal surfaces, leading to rust and corrosion in pipes, tanks, valves, and other components. Corrosion not only weakens the structural integrity of the system but also introduces contaminants into the compressed air, compromising its quality and potentially damaging downstream equipment.

2. Contaminant Carryover:

Humidity in compressed air can cause carryover of contaminants. Water droplets formed due to condensation can carry particulates, oil, and other impurities present in the air. These contaminants can then be transported along with the compressed air, leading to fouling of filters, clogging of pipelines, and potential damage to pneumatic tools, machinery, and processes.

3. Decreased Efficiency of Pneumatic Systems:

Excessive moisture in compressed air can reduce the efficiency of pneumatic systems. Water droplets can obstruct or block the flow of air, leading to decreased performance of pneumatic tools and equipment. Moisture can also cause problems in control valves, actuators, and other pneumatic devices, affecting their responsiveness and accuracy.

4. Product Contamination:

In industries where compressed air comes into direct contact with products or processes, high humidity can result in product contamination. Moisture in compressed air can mix with sensitive products, leading to quality issues, spoilage, or even health hazards in industries such as food and beverage, pharmaceuticals, and electronics manufacturing.

5. Increased Maintenance Requirements:

Humidity in compressed air can increase the maintenance requirements of a compressed air system. Moisture can accumulate in filters, separators, and other air treatment components, necessitating frequent replacement or cleaning. Excessive moisture can also lead to the growth of bacteria, fungus, and mold within the system, requiring additional cleaning and maintenance efforts.

6. Adverse Effects on Instrumentation:

Humidity can adversely affect instrumentation and control systems that rely on compressed air. Moisture can disrupt the accuracy and reliability of pressure sensors, flow meters, and other pneumatic instruments, leading to incorrect measurements and control signals.

To mitigate the impact of humidity on compressed air quality, various air treatment equipment is employed, including air dryers, moisture separators, and filters. These devices help remove moisture from the compressed air, ensuring that the air supplied is dry and of high quality for the intended applications.

air compressor

Can air compressors be integrated into automated systems?

Yes, air compressors can be integrated into automated systems, providing a reliable and versatile source of compressed air for various applications. Here’s a detailed explanation of how air compressors can be integrated into automated systems:

Pneumatic Automation:

Air compressors are commonly used in pneumatic automation systems, where compressed air is utilized to power and control automated machinery and equipment. Pneumatic systems rely on the controlled release of compressed air to generate linear or rotational motion, actuating valves, cylinders, and other pneumatic components. By integrating an air compressor into the system, a continuous supply of compressed air is available to power the automation process.

Control and Regulation:

In automated systems, air compressors are often connected to a control and regulation system to manage the compressed air supply. This system includes components such as pressure regulators, valves, and sensors to monitor and adjust the air pressure, flow, and distribution. The control system ensures that the air compressor operates within the desired parameters and provides the appropriate amount of compressed air to different parts of the automated system as needed.

Sequential Operations:

Integration of air compressors into automated systems enables sequential operations to be carried out efficiently. Compressed air can be used to control the timing and sequencing of different pneumatic components, ensuring that the automated system performs tasks in the desired order and with precise timing. This is particularly useful in manufacturing and assembly processes where precise coordination of pneumatic actuators is required.

Energy Efficiency:

Air compressors can contribute to energy-efficient automation systems. By incorporating energy-saving features such as Variable Speed Drive (VSD) technology, air compressors can adjust their power output according to the demand, reducing energy consumption during periods of low activity. Additionally, efficient control and regulation systems help optimize the use of compressed air, minimizing waste and improving overall energy efficiency.

Monitoring and Diagnostics:

Integration of air compressors into automated systems often includes monitoring and diagnostic capabilities. Sensors and monitoring devices can be installed to collect data on parameters such as air pressure, temperature, and system performance. This information can be used for real-time monitoring, preventive maintenance, and troubleshooting, ensuring the reliable operation of the automated system.

When integrating air compressors into automated systems, it is crucial to consider factors such as the specific requirements of the automation process, the desired air pressure and volume, and the compatibility of the compressor with the control and regulation system. Consulting with experts in automation and compressed air systems can help in designing an efficient and reliable integration.

In summary, air compressors can be seamlessly integrated into automated systems, providing the necessary compressed air to power and control pneumatic components, enabling sequential operations, and contributing to energy-efficient automation processes.

air compressor

What is the difference between a piston and rotary screw compressor?

Piston compressors and rotary screw compressors are two common types of air compressors with distinct differences in their design and operation. Here’s a detailed explanation of the differences between these two compressor types:

1. Operating Principle:

  • Piston Compressors: Piston compressors, also known as reciprocating compressors, use one or more pistons driven by a crankshaft to compress air. The piston moves up and down within a cylinder, creating a vacuum during the intake stroke and compressing the air during the compression stroke.
  • Rotary Screw Compressors: Rotary screw compressors utilize two intermeshing screws (rotors) to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads.

2. Compression Method:

  • Piston Compressors: Piston compressors achieve compression through a positive displacement process. The air is drawn into the cylinder and compressed as the piston moves back and forth. The compression is intermittent, occurring in discrete cycles.
  • Rotary Screw Compressors: Rotary screw compressors also employ a positive displacement method. The compression is continuous as the rotating screws create a continuous flow of air and compress it gradually as it moves along the screw threads.

3. Efficiency:

  • Piston Compressors: Piston compressors are known for their high efficiency at lower flow rates and higher pressures. They are well-suited for applications that require intermittent or variable air demand.
  • Rotary Screw Compressors: Rotary screw compressors are highly efficient for continuous operation and are designed to handle higher flow rates. They are often used in applications with a constant or steady air demand.

4. Noise Level:

  • Piston Compressors: Piston compressors tend to generate more noise during operation due to the reciprocating motion of the pistons and valves.
  • Rotary Screw Compressors: Rotary screw compressors are generally quieter in operation compared to piston compressors. The smooth rotation of the screws contributes to reduced noise levels.

5. Maintenance:

  • Piston Compressors: Piston compressors typically require more frequent maintenance due to the higher number of moving parts, such as pistons, valves, and rings.
  • Rotary Screw Compressors: Rotary screw compressors have fewer moving parts, resulting in lower maintenance requirements. They often have longer service intervals and can operate continuously for extended periods without significant maintenance.

6. Size and Portability:

  • Piston Compressors: Piston compressors are available in both smaller portable models and larger stationary units. Portable piston compressors are commonly used in construction, automotive, and DIY applications.
  • Rotary Screw Compressors: Rotary screw compressors are typically larger and more suitable for stationary installations in industrial and commercial settings. They are less commonly used in portable applications.

These are some of the key differences between piston compressors and rotary screw compressors. The choice between the two depends on factors such as required flow rate, pressure, duty cycle, efficiency, noise level, maintenance needs, and specific application requirements.

China Hot selling Advanced Technology Industrial Oil Free High Pressure Reciprocating Air Compressor   lowes air compressorChina Hot selling Advanced Technology Industrial Oil Free High Pressure Reciprocating Air Compressor   lowes air compressor
editor by CX 2024-04-26

China manufacturer Home Air Dehumidifier Refrigeration Part R134A M/Hbp Reciprocating Compressor with Hot selling

Product Description

Product Description

M/HBP R134A (110V-120V~60HZ/220V-240V~50HZ) Refrigeration Compressors Special for Home Dehumidifiers

Adopting high-quality components, SIXIHU (WEST LAKE) DIS. refrigeration compressors are always environmental friendly, high efficient, and widely praised by customers in the refrigeration industry due to its low noise, high performance, and long service life.

Features:

1. Low Noise:

– There are 2 welding methods for the compressor casing: flange butt welding or insert welding. The thickness, shape, and internal cavity size of the shell have a significant impact on noise.
– There are 2 fixing methods for the movement: suspension spring type and seat spring type, with the seat spring compressor having less noise and vibration.

2. High Performance:

– Equipped with professional valve components. The valve group is the heart of the compressor and plays a significant role in the performance of the compressor.

3. Long Service Life:

– The crankshaft and connecting rod have good performance and are resistant to friction.

4. High Efficiency & Eco-friendly:
– As the power in a hermetic compressor, an electric motor converts electrical energy into mechanical energy, driving the piston to compress refrigerant vapor, enabling the refrigerant to circulate in the refrigeration system and achieve the purpose of refrigeration

 

Product Parameters

Compressor Technical Data: M/HBP R134A 110V-120V~60HZ/220V-240V~50HZ

Serial Model HP V/Hz Displacement (cm3) Cooling Capacity    ASHRAE Motor type Starting Device Starting capacitor (uF) Running capacitor (uF) Cooling Certificate
-15ºC(5F) -10ºC(10F) -5ºC(23F) 0ºC(32F) Test Conditions: 7.2ºC(45F) 10ºC(50F)
W Btu/h W Btu/h W Btu/h W Btu/h Capacity (W) Capacity (Btu/h) lnput Power(W) Current  (A) COP   (W/W) EER    (Btu/Wh) W Btu/h
L GQR30TC 1/10 220-240V/50-60Hz 3.0  97 331  125 427  145 495  185 631  245 836  129 0.9 1.9 6.48  275 938  RSIR PTC/Heavy Hammer PTC/Current    Starting   Relay / / F CCC
GQR35TC 1/9 3.5  135 461  175 597  195 665  265 904  385 1314  185 1.1 2.1 7.17  420 1433  RSIR / / F CCC
GQR45TC 1/6 4.5 176 601  230 785  280 955  350 1194  450 1535  204 1.2 2.2 7.51  485 1655  RSIR / / F CCC
ML GQR55TC 1/6+ 5.5 245 836  310 1058  390 1331  525 1791  575 1962  273 1.5 2.1 7.19  615 2098  RSIR / / F CCC
GQR60TC 1/4 6.5 335 1143  435 1484  545 1860  665 2269  705 2405  306 1.9 2.3 7.86  745 2542  RSIR / / F CCC
GQR70TC 1/4 7.0  370 1262  480 1638  595 2030  720 2457  765 2610  364 2.1 2.1 7.17  805 2747  RSIR / / F CCC
MQ GQR80TC 1/4+ 8.0  420 1433  550 1877  680 2320  810 2764  855 2917  388 2.2  2.2 7.52  895 3054  CSIR Heavy Hammer Current    Starting   Relay 80 / F CCC
GQR90TC 1/3- 9.0  474 1617  621 2119  768 2620  910 3105  955 3258  434 2.3 2.2 7.51  995 3395  CSIR 80 / F CCC
GQR11TC 3/8 11.0  536 1829  702 2395  868 2962  1034 3528  1079 3682  469 2.9 2.3 7.85  1119 3818  CSIR 80 / F CCC
MD GQR12TC 3/8+ 12.0  606 2068  793 2706  981 3347  1168 3985  1208 4122  549 3.4 2.2 7.51  1248 4258  CSIR 80 / F CCC
GQR14TC 1/2 14.0  685 2337  896 3057  1108 3780  1320 4504  1365 4657  593 3.6 2.3 7.85  1305 4453  CSIR 80 / F CCC
GQR16TC 1/2+ 16.0  754 2573  1012 3453  1252 4272  1492 5091  1535 5237  667 4.0  2.3 7.85  1575 5374  CSIR 80 / F CCC

Serial Model HP V/Hz Displacement (cm3) Cooling Capacity    ASHRAE Motor type Starting Device Starting capacitor (uF) Running capacitor (uF) Cooling Certificate
-15ºC(5F) -10ºC(10F) -5ºC(23F) 0ºC(32F) Test Conditions: 7.2ºC(45F) 10ºC(50F)
W Btu/h W Btu/h W Btu/h W Btu/h Capacity (W) Capacity (Btu/h) lnput Power(W) Current  (A) COP   (W/W) EER    (Btu/Wh) W Btu/h
L GQR30TCD 1/10 110-120V/60Hz 3.0  118 403  150 512  174 594  225 768  295 1007  134 1.8  2.2 7.51  340 1160  RSIR PTC/Heavy Hammer PTC/Current    Starting   Relay     / / F CCC
GQR35TCD 1/9 3.5  162 553  210 717  234 798  320 1092  465 1587  211 2.0  2.2 7.52  504 1720  RSIR / / F CCC
ML GQR45TCD 1/6 4.5 210 717  275 938  340 1160  420 1433  540 1842  245 2.1 2.2 7.52  580 1979  RSIR / / F CCC
GQR55TCD 1/6+ 5.5 310 1058  390 1331  480 1638  610 2081  665 2269  316 2.9 2.1 7.18  720 2457  RSIR / / F CCC
GQR60TCD 1/4 6.5 378 1290  510 1740  650 2218  731 2494  786 2682  341 3.5 2.3 7.86  841 2869  RSIR / / F CCC
GQR70TCD 1/4 7.0  430 1467  545 1860  750 2559  806 2750  862 2941  410 3.8 2.1 7.17  917 3129  RSIR / / F CCC
MQ GQR80TCD 1/4+ 8.0  470 1604  625 2133  820 2798  907 3095  964 3289  438 4.2 2.2 7.51  1019 3477  CSIR Heavy Hammer Current    Starting   Relay     93-169 / F CCC
GQR90TCD 1/3- 9.1 530 1808  695 2371  890 3037  1019 3477  1074 3664  488 3.8 2.2 7.51  1129 3852  CSIR 93-169 / F CCC
GQR11TCD 3/8 11.0  600 2047  772 2634  954 3255  1100 3753  1155 3941  502 5.2 2.3 7.85  1210 4129  CSIR 93-169 / F CCC
MD GQR12TCD 3/8+ 12.8  678 2313  872 2975  1034 3528  1270 4333  1325 4521  602 5.5 2.2 7.51  1380 4709  CSIR 93-169 / F CCC
GQR14TCD 1/2 14.2  758 2586  985 3361  1218 4156  1402 4784  1457 4971  633 5.8 2.3 7.85  1512 5159  CSIR 93-169 / F CCC
GQR16TCD 1/2+ 15.3  829 2829  1113 3798  1375 4692  1641 5599  1696 5787  737 6.0  2.3 7.85  1751 5974  CSIR 93-169 / F CCC

→ More Compressor Please Click to Contact Us!

Company Profile

 

Certifications

With abundant technique force,we have our own researching, developing, manufacturing, inspecting and testingcenters, and imported the international advanced high-tech equipments. Our company has passed the ISO9001,ISO14001,OHS18001 international management system certificates. The products have got UL,ETL,CE,CB,and CCC certificates. Our products are not only selling strongly in more than 30 provincesand municipality,but also largely exporting to Europe,America,Australia,Middle East, Africa and South Asia. We have won an excellent reputation from the customers and friends by our product quality, price versus performance ratio and service.

FAQ

Q1: Are you a manufacturer or trader?
A1: ZHangZhoug Maidi Refrigeration Technology Co., Ltd. is a Hi-tech enterprise. We own the standard plant and office building which covering 21, 000 square meters. With abundant technique force, we have our own researching, developing, manufacturing, inspecting and testing centers, and imported the international advanced equipments.

Q2: How to match sikelan compressor to refrigeration?
A2: We have a professional team of engineers who provide technical support and online guidance on product installation and replacement.

Q3: How do you ensure quality?
A3: We have a dedicated product research and testing center with authoritative quality management system certification: ISO9001/ISO14001/OHS18001.

Q4:What’s CHINAMFG compressor usage scenario?
Q4:Our product could use in mobile applications e.g. cooling boxes,vans,boats, etc,water dispensers, minibar, refrigerators,freezer, ice maker, beers coolers, merchandisers, dehumidifier, refrigerated islands and kitchen freezers.

Q5: How much does a refrigeration part cost?
A5: Factory price for you, not cheapest but the competitive price with good quality.

Q6:What’s voltage CHINAMFG compressor available?
Q6:We have 220-240v and 110-120v for 50hz-60hz in AC compressor. And we have 12/24v/48v in DC Compressors. Depend on customer requirements.

Q7:What certifications do CHINAMFG have?
A7:We have UL, CCC, CE, CB, ETL, TUV, RoHS certifications in compressor.

Q8:What’s our CHINAMFG competitive advantages?
A8:a)More compressor model—–We have DC compressor, AC compressor and frequency conversion series compressor.
   b)Lower noisy about compressor
   c)Stable quality—–Coming from good material and technology.
   d)Good service —–Satisfaction service before and after sale.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Technical Support
Warranty: 1 Year
Lubrication Style: Lubricated
Samples:
US$ 34/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What are the differences between stationary and portable air compressors?

Stationary and portable air compressors are two common types of air compressors with distinct features and applications. Here are the key differences between them:

1. Mobility:

The primary difference between stationary and portable air compressors is their mobility. Stationary air compressors are designed to be permanently installed in a fixed location, such as a workshop or a factory. They are typically larger, heavier, and not easily movable. On the other hand, portable air compressors are smaller, lighter, and equipped with handles or wheels for easy transportation. They can be moved from one location to another, making them suitable for jobsites, construction sites, and other mobile applications.

2. Power Source:

Another difference lies in the power source used by stationary and portable air compressors. Stationary compressors are usually powered by electricity, as they are designed for continuous operation in a fixed location with access to power outlets. They are connected to the electrical grid or have dedicated wiring. In contrast, portable compressors are available in various power options, including electric, gasoline, and diesel engines. This versatility allows them to operate in remote areas or sites without readily available electricity.

3. Tank Capacity:

Tank capacity is also a distinguishing factor between stationary and portable air compressors. Stationary compressors often have larger storage tanks to store compressed air for extended periods. The larger tanks enable them to deliver a continuous and steady supply of compressed air for longer durations without the need for frequent cycling. Portable compressors, due to their compact size and portability, generally have smaller tank capacities, which may be sufficient for intermittent or smaller-scale applications.

4. Performance and Output:

The performance and output capabilities of stationary and portable air compressors can vary. Stationary compressors are typically designed for high-volume applications that require a consistent and continuous supply of compressed air. They often have higher horsepower ratings, larger motor sizes, and higher air delivery capacities. Portable compressors, while generally offering lower horsepower and air delivery compared to their stationary counterparts, are still capable of delivering sufficient air for a range of applications, including pneumatic tools, inflation tasks, and light-duty air-powered equipment.

5. Noise Level:

Noise level is an important consideration when comparing stationary and portable air compressors. Stationary compressors, being larger and built for industrial or commercial settings, are often equipped with noise-reducing features such as sound insulation and vibration dampening. They are designed to operate at lower noise levels, which is crucial for maintaining a comfortable working environment. Portable compressors, while efforts are made to reduce noise, may produce higher noise levels due to their compact size and portability.

6. Price and Cost:

Stationary and portable air compressors also differ in terms of price and cost. Stationary compressors are generally more expensive due to their larger size, higher power output, and industrial-grade construction. They often require professional installation and may involve additional costs such as electrical wiring and system setup. Portable compressors, being smaller and more versatile, tend to have a lower upfront cost. They are suitable for individual users, contractors, and small businesses with budget constraints or flexible air supply needs.

When selecting between stationary and portable air compressors, it is essential to consider the specific requirements of the intended application, such as mobility, power source availability, air demands, and noise considerations. Understanding these differences will help in choosing the appropriate type of air compressor for the intended use.

air compressor

How do you choose the right air compressor for woodworking?

Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:

1. Required Air Volume (CFM):

Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.

2. Tank Size:

Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.

3. Maximum Pressure (PSI):

Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.

4. Noise Level:

Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.

5. Portability:

Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.

6. Power Source:

Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.

7. Quality and Reliability:

Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.

8. Budget:

Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.

By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.

air compressor

What are the different types of air compressors?

There are several different types of air compressors, each with its own unique design and operating principle. Here’s an overview of the most commonly used types:

1. Reciprocating Air Compressors: Reciprocating air compressors, also known as piston compressors, use one or more pistons driven by a crankshaft to compress air. They operate by drawing air into a cylinder, compressing it with the piston’s up-and-down motion, and discharging the compressed air into a storage tank. Reciprocating compressors are known for their high pressure capabilities and are commonly used in industrial applications.

2. Rotary Screw Air Compressors: Rotary screw air compressors utilize two interlocking screws to compress air. As the male and female screws rotate, the air is trapped between them and gradually compressed as it moves along the screw threads. These compressors are known for their continuous duty cycle, high efficiency, and quiet operation. They are widely used in industrial, commercial, and automotive applications.

3. Centrifugal Air Compressors: Centrifugal air compressors rely on the principle of centrifugal force to compress air. They use a high-speed impeller to accelerate the incoming air and then convert the kinetic energy into pressure energy. Centrifugal compressors are commonly used in large-scale industrial applications that require high volumes of compressed air.

4. Rotary Vane Air Compressors: Rotary vane air compressors employ a rotor with sliding vanes that compress the air. As the rotor rotates, the vanes slide in and out of the rotor, creating compression chambers. Air is drawn in, trapped, and compressed as the vanes move. These compressors are compact, reliable, and suitable for small to medium-sized applications.

5. Axial Flow Air Compressors: Axial flow air compressors are primarily used in specialized applications such as aircraft engines and gas turbines. They utilize a series of rotating and stationary blades to compress air in a continuous flow. Axial flow compressors are known for their high flow rates and are designed for applications that require large volumes of compressed air.

6. Scroll Air Compressors: Scroll air compressors consist of two interlocking spirals or scrolls that compress the air. One spiral remains stationary while the other orbits around it, creating a series of expanding and contracting pockets that compress the air. Scroll compressors are compact, reliable, and commonly used in applications where low noise and oil-free air are required, such as medical and dental equipment.

These are just a few examples of the different types of air compressors available. Each type has its own advantages, capabilities, and ideal applications. The choice of air compressor depends on factors such as required pressure, flow rate, duty cycle, noise level, oil-free operation, and specific application requirements.

China manufacturer Home Air Dehumidifier Refrigeration Part R134A M/Hbp Reciprocating Compressor   with Hot sellingChina manufacturer Home Air Dehumidifier Refrigeration Part R134A M/Hbp Reciprocating Compressor   with Hot selling
editor by CX 2024-04-11